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Exponential Mixing for the Geodesic Flow on 
Hyperbolic Three-Manifolds 
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We give a short and direct proof of exponential mixing of geodesic flows on 
compact hyperbolic three-manifolds with respect to the Liouville measure. This 
complements earlier results of Collet Epstein-Gallovotti, Moore, and Ratner 
for hyperbolic surfaces. Furthermore, since the analysis is even easier in three 
dimensions than in two dimensions (because of the absence of discrete series 
and the simplicity of the zonal spherical functions in this case), this apparently 
gives the simplest example of a flow with exponential mixing. 
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INTRODUCTION 

In  recent years several authors  have studied the rate of  mixing for geodesic 
flows on compact  hyperbolic  manifolds (i.e., manifolds with constant  
sectional curvatures)  with respect to the Liouville measure. These are now 
the basic examples of flows which exhibit exponential  mixing (or "exponen- 
tial decay of correlations").  

No t  surprisingly, the case which has received most  at tention is that  of 
hyperbolic  surfaces. The first result in this direction was apparent ly the 
1984 paper of  Collet et al., ~2) where they showed exponential  mixing for 
geodesic flows on hyperbolic  surfaces (and test functions constant  on the 
sphere b u n d l e ) - - m o d u l o  a minor  technical omission in their proof. Sub- 
sequently, Moore  (3) showed how very general notions in representation 
theory can be used to deal with the surface case, and sketched how they 
could be extended to hyperbolic  manifolds of  arbitrary dimension (and 
other locally symmetric  manifolds). Finally, Ratner  (5~ presented yet another  
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alternative analysis of the surface case (which differed from the previous 
two in that it required a little less representation theory). 

In this paper we shall consider the case of geodesic flows on three- 
dimensional hyperbolic manifolds and test functions which are constant on 
the fibers of the sphere bundle. The most interesting point is that the 
analysis for three dimensions turns out to be even easier than for surfaces and 
thus we have what is apparently the easiest example of exponential mixing 
for flows. The analysis is closest in spirit to that of ref. 1 in that we shall 
use the classification of the irreducible unitary representations of the 
associated Lie group SL(2, C). 

1. GEODESIC  FLOWS A N D  F R A M E  FLOWS 

For a compact hyperbolic three-manifold V it is well known that we 
can represent the (five-dimensional) unit tangent bundle SV algebraically 
as F\G/B, where: 

G=PSL(2, C) is the group of 2 x 2  complex unimodular (i) 
matrices. 

(ii) 

(iii) 

F is a discrete subgroup of G (called a Kleinian group). 

B {Ie0' Ot] t 
is a compact subgroup (called the Borel subgroup). 

We shall be interested in the one-parameter subgroup 

0 

De f in i t i on .  The frame flow ~t: F \ G ~ F \ G  corresponds to the 
action of the one-parameter subgroup gt (t ~ ~) defined on the cosets by 
Fg ~-~ Fgg,. The geodesic flow Ot: F\G/B ~ F\G/B corresponds to the 
action on the double cosets by FgB ~ FggtB. 

Geometrically, F\G corresponds to the two-frame bundle over V, 
consisting of a distinguished choice of unit tangent vector and a subsequent 
choice of orthonormal vector. If we consider the maximal compact 
subgroup 
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then its action corresponds to rotating the two-frames in each fiber of the 
sphere bundle over V and therefore the quotient F\G/K can be identified 
with the manifold V. The Borel subgroup B is a subgroup of the maximal 
compact subgroup K and the geometric interpretation of the action of B on 
the two-frames corresponds to fixing the distinguished unit tangent vector 
and rotating the orthonormal vector. In particular, we can identify the 
double quotient space F\G/B with the unit tangent bundle SV of V as 
claimed above. 

The one-parameter group gt on F\G defines the frame flow on the 
two-fi'ame bundle over the manifold. Geometrically, the distinguished 
tangent vector determines a geodesic on V and is parallel-transported for 
time t along the geodesic, as is the orthonormal vector. This frame flow is 
thus a compact group extension of the geodesic flow by SO(2). Since the 
actions of B and gt commute, we can quotient out by the action of B, to 
remove the choice of orthonormal vector, and this leaves the geodesic flow 
represented by the one-parameter group gt on F\G/B [using that the 
(right) action of B on F\G commutes with the action of the one-parameter 
group g,]. 

The Liouville measure m on the unit tangent bundle SV= F\G/B is 
the measure induced by the Haar  measure on G. Let F: F\G/B ~ C be a 
C ~ function; then we denote the correlation function for F by 

(1.1) 

2. U N I T A R Y  R E P R E S E N T A T I O N  T H E O R Y  

We shall want to make use of the very explicit knowledge of the 
irreducible unitary representations of SL(2, C) (by work of Gelfand and 
Naimark; see ref. 4 for details) to study the behavior of the expression (1.1). 

To proceed we need to recall a few basic facts from the theory of 
unitary representations. To each g e G we can associate a unitary operator 
Ug: L2(F\G)-~L2(F\G) on the Hilbert space of square-integrable func- 
tions by (Ugf)(x) =f(gx),  where f e L2(F\G), x ~ F\G. 

If qi=ql(L2(F\G)) denotes the group of unitary operators from 
L2(F \G)  to itself, then the map g~-* Ug ~ ~, g E G, is called the canonical 
representation of G. 

The canonical representation has a decomposition into a denumerable 
family of (irreducible unitary) representations of G. More precisely, there 
exists an orthogonal splitting L2(F\G) +oo = @ i= 0 Hi into Hilbert spaces Hi 
invariant under Ug, for each gE G (ref. 2, p. 18). 



670 Poilicott 

Any function F~ C~ lifts to a function in C~ If we 
consider the corresponding decomposition F(v) -  +~ - Z i = 0  ci.Fi(v), with 
IlF[]2 = 1, then we can rewrite (1.1) as 

-b~o 

p(t) = ~ [ci[ 2 f Fi(~btv).Fi(v) d(Vol)(v) (2.1) 
i = 0  

The irreducible unitary representations of SL(2, C) are of the following two 
types: 

2.1. Principal Series for p e ~ ,  n e Z  

Let H = L2(C, dx dy) and the action of G be defined by 

= J ~ c ~ - ~ ) . l c z +  .(cz+d)-",  where ~ SL(2, C) 

In particular, 

(p) Ug, (x) =f(eZ'x) e (-2+ipn)t 

2.2. Complementary Series for O< p < 2  

Let H~_L2(C, dxdy) be the completion of continuous functions of 
compact support relative to the inner product ( f , g )=~ f ( z ) .~ , ( z ) .  
[z[ 2; dx dy and define the action of G by 

] ~ c ~ ) . [ c z + d  [ 2 p, where ~SL(2, C) 

and we denote f (z)  = ~_ ~ f (w) .  e izw dw as the usual Fourier transform on 
C. (2'4) In particular, U(P)J'(e2tz).2 (2 p)t. 

gt 

If we are only interested in functions on V = F\G/K (corresponding to 
functions on F\G invariant under the action of K), then: The principal 
series for n = 0 and complementary series are the only irreducible represen- 
tations containing vectors invariant under the action of the maximal com- 
pact subgroup K =  SU(2), which when normalized take the following form: 

(a) For  the principal series (n = 0) we can take 

f(z) = x ~  ~ (Izl 2 + 1)-(z-  ~p~/2 
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(b) For the complementary series we take 

• f ( z )=, /7  Izt~+ 1) (2+~)~ 

This means that for any function in L2(F\G/K)cL2(F\G) the 
coefficients corresponding to the principal series for n r 0 are identically 
zero. 

For each H i there corresponds an irreducible representation of 
the above form and an isometry V: H ~ H  satisfying VU(gP)= UV. I n  
particular, we have that 

+aC> +oO 

p( t ) :  ~ Ic,[2(Fior = ~ Ic,I2(U(P)tVF.* g . . . . .  ( ) )  .VFi._ 
i = 0  i = O  

(2.2) 

Remark. The function (VFi) can readily be identified with eigen- 
functions for the Laplace-Beltrami operator on F\G/B, and the decom- 
position corresponds to an eigenfunction expansion. 

We can consider each term separately. 

(i) Principal series with n = 0 :  If (VFi) is equal to the (normalized) 
function f(z)=(1/xf~)(lz[Z+l)-(2+iP)/2EH, then we could explicitly 
compute 

p(t) = (U(~)c c )  x g t J ~ J  

1 ( .+o0 
= -  J [([z[Z+ 1)-(2+'P)/2J[e(-2+'P)~(e4'IzL2+ 1) (2 i0)/2] dz 

e( 2+ip) t  (,2~ ~+o0  

t (r2 + l)-(2+ip)/2(e4,r2 + l)-(2-ip)/2r dr dO 
o ~o 

For p ~ 0 this integral is evaluated with the solution 

2 sin(pt) 
o ( t )  = 

p sinh(2t) 

(ii) Complementary series: If we assume that (VFi) is equal to the 
normalized function f ( z )=  (1/,,f~)([zj2 + 1) (2+p)/2, then we can similarly 
calculate 

2 sinh(pt) 
p ( t )  = 

p sinh(2t) 

822,,67,,3-4-16 
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Remark. For the reader's convenience, we shall briefly comment on 
the related analysis for SL(2, ~) in ref. 1, where the irreducible unitary 
representations can be divided into the principal, complementary, and 
discrete series. The authors derive an estimate for the contribution to p(t) 
from the complementary series. However, they omit details for the other 
two cases and, in point of fact, their claimed estimate on the contribution 
from the principal series proves to be too optimistic. 

3. RATES OF M I X I N G  

We want to add up the contributions to p(t) in (2.2) from each of the 
terms using the estimates in the previous section. We shall assume that the 
function F: V ~ C is any square-integrable function constant on fibers of the 
unit tangent bundle. We can then identify the images (VFi) in each of the 
irreducible representations with the canonical K-fixed functions f ( z )  and 
directly apply the estimates from the end of the last section. In particular, 
we get the following: 

(~  sin(pt) ~ (~  sinh(pt)~ 
p ( t ) - -  Y' Icil 2 sinh(2t)J + Z Icil 2 sinh(2t)J (3.1) 

principal comp. 
series series 

where + ~o Z i = 0  Icil 2 x ltfll2 < +oo (and, of course, the value p depends on the 
index of summation). By definition of p(t), the coefficients corresponding to 
p - -0  in the principal series is positive. 

To finish we need the following lemma: 

Lemma. There are only finitely many terms in the complementary 
series (corresponding to "small" eigenvalues of the Laplacian). 

This easily follows, for example, from the discussion on p. 178 of ref. 3, 
where Moore observes that the complementary series contains K-fixed 
vectors corresponding to small eigenvectors of the Laplacian, and the fact 
that eigenvalues of the Laplacian tend to infinity. 

These considerations allow us to get asymptotic estimates on p(t) in 
the case where we restrict to functions F on the unit tangent bundle SV 
which are constant on fibers (these being functions for which the only non- 
trivial coefficients occurring in the decomposition are for the spherical 
series--and thus the estimates in Section 2 apply). In particular, we have 
the following result. 

T h e o r e m .  There exist a finite set of constants 0 < ~i < 2 i =  1,..., n, 
say) such that whenever F: V ~  C (considered as a function F: S V ~  
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depending only on the base point on V), then there exist coefficients Ci > 0 
such that 

n 
p(t) = ~ Cie -~'' + C0(1 + t)e-2t +O(e-2') 

i=1 

By the preceding lemma we have the following result. 

C o r o l l a r y .  For  all but a finite-dimensional space in L2(V) we have 
p( t )  = O(e -2 ' ) .  

Remarks. (i) According to Sinai, (6~ if we want to allow the function 
F to vary on the fibers of the unit tangent bundle SV= F\G/B, then we can 
use that the fibers are diffeomorphic to the standard two-sphere S 2 [-and 
we can identify C~(SV)= F~176 C ~ ( S ~ ) ] ;  then on each fiber Sx V over a 
point x~  V the restriction F: SxV--* C can be decomposed into spherical 
harmonics {O~(0): O~S 2, ~ Z } ,  i.e., F(x,O)=X~c~(x).O~(O). Unfor- 
tunately, there seem to be some complications with Sinai's argument (on 
the last few lines of p. 985). 

(ii) I am grateful to a referee for the following observation: In the 
case of a more general Lie group G of split rank one [e.g., SO(n, 1), 
SU(n, 1), Sp(n, 1)] the contribution of the complimentary series would be 
Cpe(P-h)'+O(e(-l+P-h)~) and the contribution of the principal series 
would be ~<(1 + t ) e - h q  
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